Пусть m – натуральное число, m1, m2, …, mt – взаимно простые натуральные числа, произведение которых больше либо равно m.

Теорема

Любое число x: 0 <= x <= m может быть однозначно представлено в виде последовательности r(x) = (r1, r2, …, rt), где ri = x(mod mi). Для любых чисел r1 .. rt, таким образом, существует единственное число x(mod m), такое что x = ri(mod mi), 1 <= i <= t Более того, любое решение x набора такого сравнений имеет вид Читать дальше >